Comparison of Selected Methods for Detecting a Reference Element Using Key Points in Static Images

Joanna Kulawik

Abstract


The article presents a possible way to detect key points. The tests were carried out by the case of detection of a reference object in static images. For comparative purposes, Chris Harris & Mike Stephens [12] and Speeded-Up Robust Features (SURF) detectors [2, 3] were used. The descriptors were built based on the Fast Retina Key point (FREAK) [1, 17] and SURF algorithms [2, 3]. Six different configurations of key point detection methods with the above descriptors were implemented. The obtained results have been presented on exemplary images and in the table. They show that this type of detection of an element of interest can be successful and should be developed.

References


Alahi A., Ortiz R., and Vandergheynst P., (2012.2). Freak: Fast retina key point. In CVPR.

Bay H., Ess A., Tuytelaars T., Van Gool L., (2008). SURF: Speeded-Up Robust Features, [w:] Computer Vision and Image Understanding (CVIU), t. 110, pp. 346-359.

Bay H., Tuytelaars T., Van Gool L., (2006). SURF: Speeded-up robust features, [w:] Lecture Notes in Computer Science, t. 3951, pp. 404-417.

Borowska M., Kitlas A., E. Oczeretko E., A. Radwański A., Szarmach I., Szarmach J., (2010). Fractal Analysis of Dental Radiographic Images in the Irregular Regions of Interest, Information Technologies in Biomedicine, vol. 2, 2nd International Conference, Kamień Śląski 2010, June 7-9, (E. Piętka, J. Kawa Ed(s).), Adv. Intelligent Soft Comput. vol. 69, Springer, pp. 191-199.

Choraś M., (2006). Ear biometrics: feature extraction methods based on geometrical parameters, Przegląd Elektrotechniczny (Electrotechnical Review) no. 12/2006, pp. 5-10.

Donoser, M. and Bischof H., (2006). Efficient Maximally Stable Extremal Region (MSER) Tracking CVPR.

Escalera S., Baro X., Pujol O., Vitria J., Radeva P., (2011). Traffic-Sign Recognition Systems, SpringerBriefs in Computer Science, Springer, London.

Forczmański P., (September 2013), Recognition of occluded traffic signs based on two-dimensional linear discriminant analysis, Archives of Transport System Telematics, vol. 6, ipp. 3, pp. 10-13.

Forczmański P., Dziurzański P., (2013). System-level hardware implementation of simplified Low-Level color image descriptor, Proceedings 8th International Conference On Computer Recognition Systems CORES 2013, Advances in Intelligent Systems and Computing, vol. 226, pp. 461-468.

Forczmański P., Markiewicz A., (2016). Two-stage approach to extracting visual objects from paper documents, Machine Vision and Applications, Volume 27, Issue 8, pp 1243–1257.

Gauglitz S., H¨ollerer T., and Turk M., (2011). Evaluation of interest point detectors and feature descriptors for visual tracking. International Journal of Computer Vision, pages 1–26.

Harris C. and Stephens M., (1988). A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference, pp. 147–151.

Houben S., Stallkamp J., Salmen J., Schlipsing M., Igel C., (2013). Detection of Traffic Signs in Real-World Images. The German Traffic Sign Detection Benchmark, International Joint Conference on Neural Networks.

Kubanek M., (2010). Automatic Methods for Determining the Characteristic Points in Face Image. Lecture Notes in Artificial Intelligence, 6114, Part I, pp. 523-530.

Kubanek M., Smorawa D., (2015). Verification of Identity Based on Palm Vein and Palm-Print. Advances in Intelligent Systems and Computing, Soft Computing in Computer and Information Science, Springer, Volume 342, pp. 139-146.

Kulawik J., (2017). Analiza wybranych metod detekcji obiektów z wykorzystaniem współczynników kształtu, Ogólnopolska Konferencja Naukowa „Zrozumieć Naukę”, Łódź, ISBN: 978-83-946991-6-1, pp. 60.

Kulawik J., (2017). The Effect of the Edge Operation on the Detection of the Reference Element Using the FREAK and SURF Methods, Mała Wielka Nauka. Nauki Techniczne Volume 1, Łódź, ISBN: 978-83-949065-4-2, pp. 26-41.

Kulawik J., (2018). Comparison of selected methods of characteristic point detection in satellite images, Przegląd Elektrotechniczny (Electrical Review), Volume 1/2018, pp. 139-143.

Lowe D., (1999). Object recognition from local scale-invariant features. In Computer Vision. The Proceedings of the Seventh IEEE International Conference on, vol. 2 Ieee, pp. 1150–1157.

Moravec H., (September, 1980). Obstacle avoidance and navigation in the real world by a seeing robot rover. Technical Report CMU-RITR-3, Carnegie-Mellon University, Robotics Institute.

Rosten E., Drummond T., (2006). Machine learning for high speed corner detection. Computer Vision–ECCV, pp. 430–443.

Smorawa D.,Kubanek M., (2015). Biometric Systems Based of Palm Vein Patterns. Journal of Telecommunications and Information Technology, Volume 2, pp. 18-22.

Verma S.B., Chandran S., (2016). Analysis of SIFT and SURF feature extraction in palmprint verification system. In: International Conference on Computing, Communication and Control Technology (IC4T), IEEE, pp. 27–30.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 IMAGE PROCESSING & COMMUNICATIONS