The Detection of Internal Fingerprint Image Using Optical Coherence Tomography

Joanna Sekulska-Nalewajko, Jarosław Gocławski, Dominik Sankowski

Abstract


Recently, optical coherence tomography (OCT) has been tested as a contactless technique helpful for damaged or spoofed fingerprint recovery. Three dimensional OCT images cover the range from the skin surface to papillary region in upper dermis. The proposed method extracts from B-scans high intensity ridges in both air-epidermis and dermis-epidermis interfaces. The extraction is based on the localisation of two OCT signal peaks corresponding to these edges. The borders are spline smoothed in two orthogonal planes of the image space. The result images are presented and compared with camera views.

References


Akbari N., Sadr A. (2012). Automation of Fingerprint Recognition Using OCT Fingerprint Images,

Journal of Signal and Information Processing 3: 117-121

Bossen A., Lehmann R., Meier C. (2010). Internal fingerprint identification with optical coherence tomography, IEEE Photonics Technology Letters 22(7): 507-509

Chang S., Sherif S., Mao Y., Flueraru C. (2008). Large Area Full-Field Optical Coherence Tomography and its Applications, The Open Optics Journal 2: 10-20

Cheng Y., Larin K. V. (2006). Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis, Applied Optics 45(36): 9238-9245

Darlow L., Connan J. (2015). Efficient internal and surface fingerprint extraction and blending using optical coherence tomography, Applied Optics 54: 9258-9268

Darlow L., Connan J., Akhoury S.S. (2015). Internal fingerprint zone detection in optical coherence tomography fingertip scans, Journal of Electronic Imaging 24(2): 023027 1-14

Drexler W., Fujimoto J. G. (2008). Optical coherence tomography: technology and applications, Springer International Publishing 2571

Dubois A., Grieve K., Moneron G., Lecaque R., Vabre L., Boccara C. (2004). Ultrahigh-resolution full-field optical coherence tomography, Applied Optics 43(14): 2874-2883

ITK, (2017). ITK - Segmentation & Registration Toolkit, https://itk.org/

ITK 4.12.0, (2017). ITK - CurvatureAnisotropicDiffusion ImageFilter, Class Template Reference, https://itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html

Liu G., Chen Z. (2013). Capturing the vital vascular fingerprint with optical coherence tomography, Applied Optics 52(22): 5473-5477

Loupas T., McDicken W. N., Allan P. L. (1987). Noise reduction in ultrasonic images by digital filtering, British Journal of Radiology 60(712): 389-392

Malik K., Smołka B. (2012). Improved bilateral filtering scheme for noise removal in color images. In The International Conference on Informatics and Applications (ICIA2012)

Malik K., Machala B., Smołka B. (2015). Noise reduction in ultrasound images based on the concept of local neighborhood exploration, Image Processing & Communications Challenges 6, Advances in Intelligent Systems and Computing 313: 103-110

Maltoni D., Maio D., Jain A. K., Prabhakar S. (2003). Hand-book of Fingerprint Recognition, Springer, Berlin

MathWorks Inc., (2017). csaps, https://www.mathworks.com/help/curvefit/csaps.html

MathWorks Inc., (2017). Curve Fitting Toolbox, https://www.mathworks.com/help/curvefit/

MathWorks Inc., (2017). findpeaks, https://www.mathworks.com/help/signal/ref/findpeaks.html

MathWorks Inc., (2017). Matlab coder, https://www.mathworks.com/products/matlab-coder.html

MathWorks Inc., (2017). Signal Processing Toolbox, https://www.mathworks.comhelp/signal/

Matsumoto T., Matsumoto H., Yamada K., Hoshino S. (2003). Impact of Artificial Gummy Fingers on Finger-print Systems, Proceedings of SPIE 4677: 275-289

Michailowich O., Tannenbaum A., (2006). Despeckling of medical ultrasound images, IEEE

Transactions on Ultrasonic, Ferroelectric, Frequency Control 53(1): 64-78

MIT - Massachusetts Institute of Technology, (2017). Stability of Finite Difference Methods - MIT, http://web.mit.edu/16.90/BackUp/www/pdfs/Chapter14

Perona P., Malik J. (2006). Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 7(12): 629-639

Vizcaya P. R., Gerhardt L. A. (1996). Nonlinear Orientation Model for Global Description of Fingerprints, Pattern Recognition 29(7): 1221-1232

Whitaker R. T., Xue X. (2001). Variableconductance, level-set curvature for image denoising, Proceedings of International Conference on Image Processing (3): 142-145

Yu Y., Acton S. T. (2002). Speckle reducing anisotropic diffusion, IEEE Transactions on Image Processing 11(11): 1260-1270

Zhou Z., Guo Z., Dong G., Sun J., Zhang D., Wu B. (2015). A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Transactions on Image Processing 24(1): 249-258


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 IMAGE PROCESSING & COMMUNICATIONS